Cart (Loading....) | Create Account
Close category search window
 

JointMMCC: Joint Maximum-Margin Classification and Clustering of Imaging Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Filipovych, R. ; Dept. of Radiol., Univ. of Pennsylvania, Philadelphia, PA, USA ; Resnick, S.M. ; Davatzikos, C.

A number of conditions are characterized by pathologies that form continuous or nearly-continuous spectra spanning from the absence of pathology to very pronounced pathological changes (e.g., normal aging, mild cognitive impairment, Alzheimer's). Moreover, diseases are often highly heterogeneous with a number of diagnostic subcategories or subconditions lying within the spectra (e.g., autism spectrum disorder, schizophrenia). Discovering coherent subpopulations of subjects within the spectrum of pathological changes may further our understanding of diseases, and potentially identify subconditions that require alternative or modified treatment options. In this paper, we propose an approach that aims at identifying coherent subpopulations with respect to the underlying MRI in the scenario where the condition is heterogeneous and pathological changes form a continuous spectrum. We describe a joint maximum-margin classification and clustering (JointMMCC) approach that jointly detects the pathologic population via semi-supervised classification, as well as disentangles heterogeneity of the pathological cohort by solving a clustering subproblem. We propose an efficient solution to the nonconvex optimization problem associated with JointMMCC. We apply our proposed approach to an medical resonance imaging study of aging, and identify coherent subpopulations (i.e., clusters) of cognitively less stable adults.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.