By Topic

Simulation of the transient response of a high-T/sub c/ superconducting current limiter inserted in an electrical distribution system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
N. E. Reimann ; Swiss Federal Inst. of Technol., Lausanne, Switzerland ; R. Cherkaoui ; B. Dutoit ; D. Djukic
more authors

The ever-increasing demand for electrical power leads to reinforced power systems. Therefore, the overcurrents resulting from contingencies such as short-circuits are increasingly higher. In order to reduce these overcurrents, a protection system composed of a superconducting current limiter and a traditional breaker seems to provide a promising solution for future power system operation. In this context, the authors aim is to analyze the transient response to a fault of a resistive type high-T/sub c/ superconducting fault current limiter inserted in an electrical power system. In order to do this, simulations were carried out with the well-known EMTP software. The fault current limiter was represented using a preliminary tape model that includes the AC losses contribution and is valid for any current wave shape. This tape model was developed at the Swiss Federal Institute of Technology in Lausanne, using measurements of the dynamic behavior of Ag-sheathed Bi-2223 tapes.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:7 ,  Issue: 2 )