By Topic

Application of Nb/sub 3/Sn superconductors in high-field accelerator magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. den Ouden ; Low Temp. Div., Twente Univ., Enschede, Netherlands ; S. Wessel ; E. Krooshoop ; H. ten Kate

Last year a record central field of 11 T at first excitation at 4.4 K has been achieved with the experimental LHC model dipole magnet MSUT by utilising a high J/sub c/ powder-in-tube Nb/sub 3/Sn conductor. This is the first real breakthrough towards fields well above 10 T at 4 K. The clear influence of magnetisation and coupling currents on the field quality, the quench behaviour and the temperature development in the coils has been measured and is discussed. For application in high-field accelerator magnets (10-15 T dipoles, 300-400 T/m quadrupoles) these experimental results clearly reveal the potential, the present limitations and the necessary improvements of Nb/sub 3/Sn technology with respect to strand, cable and coil design and manufacturing. A brief review of developments in this field is presented. The focus is on accelerator dipole magnets but the key issues for quadrupole magnets are quite similar.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:7 ,  Issue: 2 )