By Topic

Broadband Silicon Photonic Packet-Switching Node for Large-Scale Computing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Wenjia Zhang ; Dept. of Electron. Eng., Columbia Univ., New York, NY, USA ; Lin Xu ; Qi Li ; Lira, H.L.R.
more authors

We present a broadband packet-switching node that utilizes silicon photonic technology. The node design uses a silicon microring for switching functionality, leverages in-flight header processing for arbitration, and has a tunable driving circuit for thermal-effect mitigation. Moreover, these integrated microring switches are capable of scaling to tremendously high port counts in a compact area, which are attractive for data-center networks. We experimentally characterize the extinction ratio of the switch for varying packet durations, interarrival times, and driving voltages and demonstrate an error-free routing of 10-Gb/s wavelength-striped packets with lengths of up to 1536 ns. We further study the resonance thermal drifting for long- hold-time packet switching through carrier injection and show thermal-effect mitigation using a pre-emphasized gating signal.

Published in:

Photonics Technology Letters, IEEE  (Volume:24 ,  Issue: 8 )