By Topic

Semantics-Robust Design Patterns for IEC 61499

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dubinin, V.N. ; Dept. of Comput. Sci., Univ. of Penza, Penza, Russia ; Vyatkin, V.

The international standard IEC 61499 for the design of distributed industrial control systems defines an abstract model of function blocks (FB) which allows many different semantic interpretations. As a consequence, in addition, so-called execution models were proposed to specify the execution order of FBs. The variety of models leads to the incompatibility of tools and hinders the portability of automation software. To achieve a degree of execution model independence, in this paper, design patterns are suggested that make FB systems-robust to changes of execution semantics. A semantic-robust pattern is defined for a particular source execution model. The patterns themselves are implemented by means of the FB apparatus and therefore are fairly universal. The patterns can be defined and implemented using the FB transformations expressed in terms of Attributed Graph Grammars.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:8 ,  Issue: 2 )