By Topic

Driving and Braking Torque Distribution Methods for Front- and Rear-Wheel-Independent Drive-Type Electric Vehicles on Roads With Low Friction Coefficient

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nobuyoshi Mutoh ; Graduate School of System Design, Tokyo Metropolitan University, Tokyo , Japan

This paper focuses on the development of a front- and rear-wheel-independent drive-type electric vehicle (EV) (FRID EV) as a next-generation EV. The ideal characteristics of a FRID EV promote good performance and safety and are the result of structural features that independently control the driving and braking torques of the front and rear wheels. The first characteristic is the failsafe function. This function enables vehicles to continue running without any unexpected or sudden stops, even if one of the propulsion systems fails. The second characteristic is a function that performs efficient acceleration and deceleration on all road surfaces. This function works by distributing the driving or braking torques to the front and rear wheels, taking into consideration load movement. The third characteristic ensures that the vehicle runs safely on roads with a low friction coefficient (μ), such as icy roads. In this paper, we propose a driving torque distribution method when cornering and a braking torque distribution method; these methods are related to the third characteristic, and they are particularly effective when driving on roads with ultralow μ. We verify the effectiveness of the proposed torque control methods through simulations and experiments on the ultralow-μ road surface with a μ of 0.1.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:59 ,  Issue: 10 )