By Topic

Simulation and Design Methodology for Hybrid SET-CMOS Integrated Logic at 22-nm Room-Temperature Operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Parekh, R. ; Nanofabrication & Nanocharacterization Res. Center Labs., Univ. de Sherbrooke, Sherbrooke, QC, Canada ; Beaumont, A. ; Beauvais, J. ; Drouin, D.

Single-electron transistor (SET) circuits can be stacked above the CMOS platform to achieve functional and heterogeneous 3-D integration of nanoelectronic devices. For SET-CMOS hybridization, CMOS technology is essential for I/O, signal restoration, and maintaining compatibility with established technology. In spite of the SET's unparalleled advantages, its low current drive and output voltage when driving CMOS logic makes its use questionable in commercial ICs, specifically at the SET-CMOS interface. In this paper, we contribute to the design, analysis, and simulation of hybrid SET-CMOS circuits exploiting room-temperature operating SET technology. We developed an efficient computer-aided design tool to simulate large-scale SET and hybrid SET-CMOS circuits with conventional device elements. To demonstrate the SET logic driving capability for CMOS with interconnect parasitics, we analytically derived the SET logic parameters for the 22-nm technology node and used them to simulate hybrid SET-CMOS logic. We studied the performance of such hybrid logic circuit in terms of delay and bandwidth and addressed the tradeoffs between fabrication and electrical parameters. Our simulation results demonstrate the SET logic driving capability for CMOS comparable output voltage at gigahertz frequency in a hybrid SET-CMOS architecture. Finally, a comparison between SET and CMOS logic demonstrates that the SET logic outperforms CMOS.

Published in:

Electron Devices, IEEE Transactions on  (Volume:59 ,  Issue: 4 )