By Topic

Novel Spatio-Temporal Structural Information Based Video Quality Metric

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yue Wang ; Grad. Univ. of Chinese Acad. of Sci., Beijing, China ; Tingting Jiang ; Ma, Siwei ; Wen Gao

Video quality assessment (VQA) is very important for many video processing applications, e.g., compression, archiving, restoration, and enhancement. An ideal video quality metric should achieve consistency between video distortion prediction and psychological perception of human visual system. Different from the quality assessment of single images, motion information and temporal distortion should be carefully considered for VQA. Most of previous VQA algorithms deal with the motion information through two ways: either incorporating motion characteristics into a temporal weighting scheme to account for their affects on the spatial distortion, or modeling the temporal distortion and spatial distortion independently. Optical flows need to be estimated in the two ways. In this paper, we propose a different methodology to deal with the motion information. Instead of explicitly calculating the optical flow and independently modeling the temporal distortion, both the spatial edge features and temporal motion characteristics are accounted for by some structural features in the localized spacetime regions. We propose to represent the structural information by two descriptors extracted from the 3-D structure tensors, which are the largest eigenvalue as well as its corresponding eigenvector. Experimental results on LIVE database and VQEG FR-TV Phase-I database show that the proposed VQA metric is competitive with state-of-the-art VQA metrics, while keeping relatively low computing complexity.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:22 ,  Issue: 7 )