By Topic

Maximally Sparse Arrays Via Sequential Convex Optimizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Giancarlo Prisco ; SELEX Sistemi Integrati S.p.A., Giugliano, Napoli, Italy ; Michele D'Urso

The design of sparse arrays able to radiate focused beam patterns satisfying a given upper-bound power mask with the minimum number of sources is a research area of increasing interest. The related synthesis problem can be formulated with proper constraints on the cardinality of the solution space, i.e., its l0-norm. Unfortunately, such a nonconvex constraint requires to solve an NP-hard problem. Interesting ideas to relax the above constraint in a convex way have been successfully proposed. A possible solution is based on the minimization of the l1-norm. This strategy is not always able to achieve a maximally sparse solution. In the following, an innovative synthesis scheme that optimizes both excitation weights and sensor positions of an array radiating pencil beam-patterns is discussed. The solution algorithm is based on sequential convex optimizations including a reweighted l1 -norm minimization. Numerical tests, referred to benchmark problems, show that the proposed synthesis method is able to achieve maximally sparse linear arrays, also compared to the best results reported in the literature, obtained by means of global optimization schemes.

Published in:

IEEE Antennas and Wireless Propagation Letters  (Volume:11 )