By Topic

Two Designs of Space-Time Block Codes Achieving Full Diversity With Partial Interference Cancellation Group Decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Zhang ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Tianyi Xu ; Xia, Xiang-Gen

A partial interference cancellation (PIC) group decoding based space-time block code (STBC) design criterion was recently proposed by Guo and Xia, where the decoding complexity and the code rate traeoff is dealt when the full diversity is achieved. In this paper, two designs of STBC are proposed for any number of transmit antennas that can obtain full diversity when a PIC group decoding (with a particular grouping scheme) is applied at receiver. With the PIC group decoding and an appropriate grouping scheme for the decoding, the proposed STBC are shown to obtain the same diversity gain as the ML decoding, but have a low decoding complexity. The first proposed STBC is designed with multiple diagonal layers and it can obtain the full diversity for two-layer design with the PIC group decoding and the rate is up to 2 symbols per channel use. With PIC-SIC group decoding, the first proposed STBC can obtain full diversity for any number of layers and the rate can be full. The second proposed STBC can obtain full diversity and a rate up to 9/4 with the PIC group decoding. Some code design examples are given and simulation results show that the newly proposed STBC can well address the rate-performance-complexity tradeoff of the MIMO systems.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 2 )