By Topic

Quasi-Cyclic LDPC Codes: Influence of Proto- and Tanner-Graph Structure on Minimum Hamming Distance Upper Bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roxana Smarandache ; Department of Mathematics and Statistics, San Diego State University, San Diego, CA, USA ; Pascal O. Vontobel

Quasi-cyclic (QC) low-density parity-check (LDPC) codes are an important instance of proto-graph-based LDPC codes. In this paper we present upper bounds on the minimum Hamming distance of QC LDPC codes and study how these upper bounds depend on graph structure parameters (like variable degrees, check node degrees, girth) of the Tanner graph and of the underlying proto-graph. Moreover, for several classes of proto-graphs we present explicit QC LDPC code constructions that achieve (or come close to) the respective minimum Hamming distance upper bounds. Because of the tight algebraic connection between QC codes and convolutional codes, we can state similar results for the free Hamming distance of convolutional codes. In fact, some QC code statements are established by first proving the corresponding convolutional code statements and then using a result by Tanner that says that the minimum Hamming distance of a QC code is upper bounded by the free Hamming distance of the convolutional code that is obtained by “unwrapping” the QC code.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 2 )