By Topic

Multiuser Scheduling in a Markov-Modeled Downlink Using Randomly Delayed ARQ Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Murugesan, S. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Schniter, P. ; Shroff, N.B.

This paper focuses on the downlink of a cellular system and studies opportunistic multiuser scheduling under imperfect channel state information, by exploiting the memory inherent in the channel. The channel between the base station and each user is modeled by a two-state Markov chain and the scheduled user sends back an ARQ feedback that arrives at the scheduler with a random delay, i.i.d. across users and time. The scheduler indirectly estimates the channel via accumulated delayed-ARQ feedback and uses this information to make scheduling decisions. The throughput maximization problem is formulated as a partially observable Markov decision process (POMDP). For the case of two users in the system, it is shown that a greedy policy is sum throughput optimal for any distribution on the ARQ feedback delay. For the case of more than two users, the greedy policy is suboptimal and numerical studies demonstrate that it has near optimal performance. Also, the greedy policy can be implemented by a simple algorithm that does not require the statistics of the underlying Markov channel or the ARQ feedback delay, thus making it robust against errors in system parameter estimation. Establishing an equivalence between the two-user system and a genie-aided system, a simple closed form expression for the sum capacity of the downlink is obtained. Further, inner and outer bounds on the capacity region of the downlink are obtained.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 2 )