Cart (Loading....) | Create Account
Close category search window
 

Secret-Key Generation Using Correlated Sources and Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khisti, A. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Diggavi, S.N. ; Wornell, Gregory W.

We study the secret-key capacity in a joint source-channel coding setup-the terminals are connected over a discrete memoryless channel and have access to side information, modelled as a pair of discrete memoryless source sequences. As our main result, we establish the upper and lower bounds on the secret-key capacity. In the lower bound expression, the equivocation terms of the source and channel components are functionally additive even though the coding scheme generates a single secret-key by jointly taking into account the source and channel equivocations. Our bounds coincide, thus establishing the capacity, when the underlying wiretap channel can be decomposed into a set of independent, parallel, and reversely degraded channels. For the case of parallel Gaussian channels and jointly Gaussian sources we show that Gaussian codebooks achieve the secret-key capacity. In addition, when the eavesdropper also observes a correlated side information sequence, we establish the secret-key capacity when both the source and channel of the eavesdropper are a degraded version of the legitimate receiver. We finally also treat the case when a public discussion channel is available, propose a separation based coding scheme, and establish its optimality when the channel output symbols of the legitimate receiver and eavesdropper are conditionally independent given the input.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.