By Topic

Rank Awareness in Joint Sparse Recovery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mike E. Davies ; Institute for Digital Communication, Edinburgh University, Edinburgh, U.K. ; Yonina C. Eldar

This paper revisits the sparse multiple measurement vector (MMV) problem, where the aim is to recover a set of jointly sparse multichannel vectors from incomplete measurements. This problem is an extension of single channel sparse recovery, which lies at the heart of compressed sensing. Inspired by the links to array signal processing, a new family of MMV algorithms is considered that highlight the role of rank in determining the difficulty of the MMV recovery problem. The simplest such method is a discrete version of MUSIC which is guaranteed to recover the sparse vectors in the full rank MMV setting, under mild conditions. This idea is extended to a rank aware pursuit algorithm that naturally reduces to Order Recursive Matching Pursuit (ORMP) in the single measurement case while also providing guaranteed recovery in the full rank setting. In contrast, popular MMV methods such as Simultaneous Orthogonal Matching Pursuit (SOMP) and mixed norm minimization techniques are shown to be rank blind in terms of worst case analysis. Numerical simulations demonstrate that the rank aware techniques are significantly better than existing methods in dealing with multiple measurements.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 2 )