By Topic

On Codecell Convexity of Optimal Multiresolution Scalar Quantizers for Continuous Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
András Antos ; Computer and Automation Research, Institute of the Hungarian Academy of Sciences, Budapest, Hungary

It has been shown by earlier results that for fixed rate multiresolution scalar quantizers and for mean squared error distortion measure, codecell convexity precludes optimality for certain discrete sources. However it was unknown whether the same phenomenon can occur for any continuous source. In this paper, examples of continuous sources (even with bounded continuous densities) are presented for which optimal fixed rate multiresolution scalar quantizers cannot have only convex codecells, proving that codecell convexity precludes optimality also for such regular sources.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 2 )