By Topic

Efficient shortest paths on massive social graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaohan Zhao ; Dept. of Comput. Sci., U.C. Santa Barbara, Santa Barbara, CA, USA ; Sala, A. ; Haitao Zheng ; Zhao, B.Y.

Analysis of large networks is a critical component of many of today's application environments, including online social networks, protein interactions in biological networks, and Internet traffic analysis. The arrival of massive network graphs with hundreds of millions of nodes, e.g. social graphs, presents a unique challenge to graph analysis applications. Most of these applications rely on computing distances between node pairs, which for large graphs can take minutes to compute using traditional algorithms such as breadth-first-search (BFS). In this paper, we study ways to enable scalable graph processing for today's massive networks. We explore the design space of graph coordinate systems, a new approach that accurately approximates node distances in constant time by embedding graphs into coordinate spaces. We show that a hyperbolic embedding produces relatively low distortion error, and propose Rigel, a hyperbolic graph coordinate system that lends itself to efficient parallelization across a compute cluster. Rigel produces significantly more accurate results than prior systems, and is naturally parallelizable across compute clusters, allowing it to provide accurate results for graphs up to 43 million nodes. Finally, we show that Rigel's functionality can be easily extended to locate (near-) shortest paths between node pairs. After a onetime preprocessing cost, Rigel answers node-distance queries in 10's of microseconds, and also produces shortest path results up to 18 times faster than prior shortest-path systems with similar levels of accuracy.

Published in:

Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 2011 7th International Conference on

Date of Conference:

15-18 Oct. 2011