By Topic

A Programmable Laboratory Testbed in Support of Evaluation of Functional Brain Activation and Connectivity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Randall L. Barbour ; Department of Pathology, SUNY Downstate Medical Center, Brooklyn, NY, USA ; Harry L. Graber ; Yong Xu ; Yaling Pei
more authors

An important determinant of the value of quantitative neuroimaging studies is the reliability of the derived information, which is a function of the data collection conditions. Near infrared spectroscopy (NIRS) and electroencelphalography are independent sensing domains that are well suited to explore principal elements of the brain's response to neuroactivation, and whose integration supports development of compact, even wearable, systems suitable for use in open environments. In an effort to maximize the translatability and utility of such resources, we have established an experimental laboratory testbed that supports measures and analysis of simulated macroscopic bioelectric and hemodynamic responses of the brain. Principal elements of the testbed include 1) a programmable anthropomorphic head phantom containing a multisignal source array embedded within a matrix that approximates the background optical and bioelectric properties of the brain, 2) integrated translatable headgear that support multimodal studies, and 3) an integrated data analysis environment that supports anatomically based mapping of experiment-derived measures that are directly and not directly observable. Here, we present a description of system components and fabrication, an overview of the analysis environment, and findings from a representative study that document the ability to experimentally validate effective connectivity models based on NIRS tomography.

Published in:

IEEE Transactions on Neural Systems and Rehabilitation Engineering  (Volume:20 ,  Issue: 2 )