Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Projection X-Space Magnetic Particle Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Goodwill, P.W. ; Dept. of Bioeng., Univ. of California, Berkeley, CA, USA ; Konkle, J.J. ; Bo Zheng ; Saritas, E.U.
more authors

Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex “Cal” phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 5 )