By Topic

Environment-Detection-and-Mapping Algorithm for Autonomous Driving in Rural or Off-Road Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jaewoong Choi ; Vehicle Dynamics and Control Laboratory, School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea ; Junyoung Lee ; Dongwook Kim ; Giacomo Soprani
more authors

This paper presents an environment-detection-and-mapping algorithm for autonomous driving that is provided in real time and for both rural and off-road environments. Environment-detection-and-mapping algorithms have been designed to consist of two parts: (1) lane, pedestrian-crossing, and speed-bump detection algorithms using cameras and (2) obstacle detection algorithm using LIDARs. The lane detection algorithm returns lane positions using one camera and the vision module “VisLab Embedded Lane Detector (VELD),” and the pedestrian-crossing and speed-bump detection algorithms return the position of pedestrian crossings and speed bumps. The obstacle detection algorithm organizes data from LIDARs and generates a local obstacle position map. The designed algorithms have been implemented on a passenger car using six LIDARs, three cameras, and real-time devices, including personal computers (PCs). Vehicle tests have been conducted, and test results have shown that the vehicle can reach the desired goal with the proposed algorithm.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:13 ,  Issue: 2 )