By Topic

Context-Based Electronic Health Record: Toward Patient Specific Healthcare

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
William Hsu ; Department of Radiological Sciences , University of California, Los Angeles, USA ; Ricky K. Taira ; Suzie El-Saden ; Hooshang Kangarloo
more authors

Due to the increasingly data-intensive clinical environment, physicians now have unprecedented access to detailed clinical information from a multitude of sources. However, applying this information to guide medical decisions for a specific patient case remains challenging. One issue is related to presenting information to the practitioner: displaying a large (irrelevant) amount of information often leads to information overload. Next-generation interfaces for the electronic health record (EHR) should not only make patient data easily searchable and accessible, but also synthesize fragments of evidence documented in the entire record to understand the etiology of a disease and its clinical manifestation in individual patients. In this paper, we describe our efforts toward creating a context-based EHR, which employs biomedical ontologies and (graphical) disease models as sources of domain knowledge to identify relevant parts of the record to display. We hypothesize that knowledge (e.g., variables, relationships) from these sources can be used to standardize, annotate, and contextualize information from the patient record, improving access to relevant parts of the record and informing medical decision making. To achieve this goal, we describe a framework that aggregates and extracts findings and attributes from free-text clinical reports, maps findings to concepts in available knowledge sources, and generates a tailored presentation of the record based on the information needs of the user. We have implemented this framework in a system called Adaptive EHR, demonstrating its capabilities to present and synthesize information from neurooncology patients. This paper highlights the challenges and potential applications of leveraging disease models to improve the access, integration, and interpretation of clinical patient data.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:16 ,  Issue: 2 )