Cart (Loading....) | Create Account
Close category search window
 

A Robust Motion Compensation Approach for UAV SAR Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Zhang ; Nat. Key Lab. for Radar Signal Process., Xidian Univ., Xi''an, China ; Zhijun Qiao ; Meng-dao Xing ; Lei Yang
more authors

Unmanned aerial vehicle (UAV) synthetic aperture radar (SAR) is an essential tool for modern remote sensing applications. Owing to its size and weight constraints, UAV is very sensitive to atmospheric turbulence that causes serious trajectory deviations. In this paper, a novel databased motion compensation (MOCO) approach is proposed for the UAV SAR imagery. The approach is implemented by a three-step process: 1) The range-invariant motion error is estimated by the weighted phase gradient autofocus (WPGA), and the nonsystematic range cell migration function is calculated from the estimate for each subaperture SAR data; 2) the retrieval of the range-dependent phase error is executed by a local maximum-likelihood WPGA algorithm; and 3) the subaperture phase errors are coherently combined to perform the MOCO for the full-aperture data. Both simulated and real-data experiments show that the proposed approach is appropriate for highly precise imaging for UAV SAR equipped with only low-accuracy inertial navigation system.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 8 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.