Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Investigation of Optical Flatness of Stretched Membrane Drum-Type Micromirror

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kundu, S.K. ; Dept. of Adv. Sci. & Technol., Toyota Technol. Inst., Nagoya, Japan ; Hikita, A. ; Kumagai, S. ; Sasaki, M.

Realizing an optically flat and lightweight high-speed scanning micromirror still remains as a challenging problem. In this paper, we propose a drum-type lightweight micromirror that is capable of providing high scanning speed and retaining optical flatness, simultaneously. The fabrication technique and surface deformation analysis of the proposed micromirror are described. The drum-type design is realized using a stretched polycrystalline (poly-) Si membrane across a rigid crystalline (c-) Si ring. The tensile stress in the poly-Si membrane is 300-400 MPa that keeps the membrane flat. At the static condition, the total peak-to-valley surface heights in the center poly-Si membrane of the designed five distinct shapes of micromirrors are varied from 16 to 29 nm. The stress concentration at mirror edge is investigated by the amount of surface distortion which is less than 40 nm (i.e., one-tenth wavelength of the blue light). The maximum total peak-to-valley surface height is about 50 nm and the dominant profile is at the connecting part between the c-Si ring and the poly-Si membrane. The amount of dynamic deformation in the poly-Si membrane is less than 40 nm. This satisfies the optical flatness compared to the wavelength of blue light.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 10 )