By Topic

Video rate Atomic Force Microscopy (AFM) imaging using compressive sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bo Song ; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, 48824 USA ; Ning Xi ; Ruiguo Yang ; King Wai Chiu Lai
more authors

Atomic Force Microscopy (AFM) is a powerful tool for nano-size imaging. The advantage of AFM is that it can get extraordinary high resolution image at atom level. However, AFM obtains the sample topography image through scanning on the top of sample line by line, therefore it takes couples minutes to get an image and this negative point makes it difficult to continuously observe surface change during manipulation. In this paper, a novel approach for compressive sensing based video rate AFM imaging system is proposed. In this method, compressive sensing is used for sampling topography information of sample surface efficiently. Compressive sensing could use fewer measurements for data sensing to recovery the image through image reconstruction algorithm. This technique decreases the scanning time for AFM scanner because of fewer measurements needed. The video rate for this new approach could reach as high as 1.75 seconds per frame.

Published in:

Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on

Date of Conference:

15-18 Aug. 2011