Cart (Loading....) | Create Account
Close category search window
 

Investigations of bio marker for stem cell differentiations using an Atomic Force Microscopy based nanorobot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ruiguo Yang ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Ning Xi ; Chengeng Qu ; Fung, C.K.M.
more authors

Stem cells are cells characterized by their ability to differentiate into multiple types of cells. This unique property has the potential to lead to many promising solutions to human disease treatment. The stem cell differentiation process can be influenced by many factors. One of the important factors is the mechanical stimulation by modulating the extracellular matrix (ECM) elasticity. Stem cell stiffness increases as it differentiates to lower potency stem cells. This might be due to the reorganization of the cell cytoskeleton and could be confirmed by different imaging techniques. Atomic Force Microscopy (AFM) has been an ideal instrument in nanoscale imaging and mechanical property characterization because of the nature of its measurement. In this study, we applied the AFM with nanomanipulation capability to investigate mechanical properties of stem cells with and without differentiation in a time-lapse fashion. The experimental results showed that we were able to forecast the differentiation of mouse embryonic stem cells (mESC) around 24 hours after removal of Leukemia inhibitory factor (LIF). The stiffness of mESC after differentiation shows a one-fold increase over that of non-differentiated cells. Therefore the nanomechanical marker can be used as an early indicator for mESC differentiation.

Published in:

Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on

Date of Conference:

15-18 Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.