By Topic

Quench localization and current redistribution after quench in superconducting dipole magnets wound with Rutherford-type cables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Jongeleen ; CERN, Geneva, Switzerland ; D. Leroy ; A. Siemko ; R. Wolf

Quench development is studied for the first few milliseconds after the start of a quench with the help of voltage taps and pickup coils in the LHC accelerator dipole models. The reliability of the pickup coil method (the so called quench antenna) is discussed. By studying the flux through the pick-up coils as a function of time information about the current redistribution after the quench in the magnet cable is obtained. Several possible current redistribution models are studied: current transfer between the two layers of the cable, adjacent strand current transfer and redistribution governed by magnetoresistance, strand and interstrand resistance. Comparison of the simulations with the measurements in the magnets shows that the magnetoresistance of the copper in the cable matrix is the main mechanism responsible for current redistribution just after a quench.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:7 ,  Issue: 2 )