By Topic

Neural nets can be universal approximators for fuzzy functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Buckley, J.J. ; Dept. of Math., Alabama Univ., Birmingham, AL, USA ; Hayashi, Y.

We first argue that the extension principle is too computationlly involved to be an efficient way for a computer to evaluate fuzzy functions. We then suggest using α-cuts and interval arithmetic to compute the values of fuzzy functions. Using this method of computing fuzzy functions, we then show that neural nets are universal approximators for (computable) fuzzy functions, when we only input non-negative, or non-positive, fuzzy numbers

Published in:

Neural Networks,1997., International Conference on  (Volume:4 )

Date of Conference:

9-12 Jun 1997