By Topic

Hand pose identification from monocular image for sign language recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. K. Bhuyan ; Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, India, 781039 ; Mithun Kumar Kar ; Debanga Raj Neog

In this paper, a novel approach for hand pose recognition is proposed by analyzing the textures and key geometrical features of the hand. A skeletal hand model is constructed to analyze the abduction/adduction movements of the fingers and subsequently, texture analysis is performed to consider some inflexive finger movements. Probabilistic distributions of the geometric features are considered for modelling intra-class abduction/adduction variations. Gestures differing in inflexive positions of fingers are classified based on Homogeneous Texture Descriptors (HTD), where the texture region is characterized using the mean energy and energy deviation from a set of frequency channels. Similarity measures are computed between input gestures and pre-modelled gesture patterns from a database by considering intra class abduction/adduction angle variations and inter class inflexive variations. Experimental results show the efficacy of our proposed hand pose recognition system.

Published in:

Signal and Image Processing Applications (ICSIPA), 2011 IEEE International Conference on

Date of Conference:

16-18 Nov. 2011