By Topic

Video-based face recognition using Exemplar-Driven Bayesian Network classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
See, J. ; Fac. of Inf. Technol., Multimedia Univ., Cyberjaya, Malaysia ; Fauzi, M.F.A. ; Eswaran, C.

Many recent works in video-based face recognition involved the extraction of exemplars to summarize face appearances in video sequences. However, there has been a lack of attention towards modeling the causal relationship between classes and their associated exemplars. In this paper, we propose a novel Exemplar-Driven Bayesian Network (EDBN) classifier for face recognition in video. Our Bayesian framework addresses the drawbacks of typical exemplar-based approaches by incorporating temporal continuity between consecutive video frames while encoding the causal relationship between extracted exemplars and their parent classes within the framework. Under the EDBN framework, we describe a non-parametric approach of estimating probability densities using similarity scores that are computationally quick. Comprehensive experiments on two standard face video datasets demonstrated good recognition rates achieved by our method.

Published in:

Signal and Image Processing Applications (ICSIPA), 2011 IEEE International Conference on

Date of Conference:

16-18 Nov. 2011