By Topic

Quasi-Analytical Modeling of Transmission/Reflection in Strip/Slit Gratings Loaded With Dielectric Slabs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Raúl Rodriguez-Berral ; Microwaves Group, Department of Applied Physics 1, ETS de Ingeniería Informática, University of Seville, Seville, Spain ; Francisco Medina ; Francisco Mesa ; María Garcia-Vigueras

This paper presents a quasi-analytical approach to study the classic topic of transmission/reflection of electromagnetic waves through 1-D periodic arrays of strips/slits in metal screens. The approach is based on standard waveguide discontinuity theory. Starting from field equations, it is inferred a circuit-like reduced-order model with just one parameter to be determined. The value of this parameter can be obtained from the transmission/reflection coefficient provided by any full-wave method at just one single frequency. In this way, the computation effort to obtain very wide-band responses of periodically distributed slits or strips under oblique TE/TM illumination in the presence of loading dielectric slabs is reduced to the full-wave analysis of the structure at a single frequency value. For relatively narrow strip/slit gratings, this procedure gives very accurate results even for very complicated transmission/reflection spectra. An additional advantage of the present approach is that it allows for an easy understanding of the underlying physics of the phenomena involved.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 3 )