By Topic

Theoretical Models of Modulation Transfer Function, Quantum Efficiency, and Crosstalk for CCD and CMOS Image Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Djite, I. ; Inst. Super. de l''Aeronautique et de l''Espace (ISAE), Univ. de Toulouse, Toulouse, France ; Estribeau, M. ; Magnan, P. ; Rolland, G.
more authors

This paper proposes analytical models of modulation transfer function (MTF), quantum efficiency (QE), and crosstalk for charge-coupled device (CCD) and CMOS image sensors. A unified MTF model for a CCD sensor built on an epitaxial layer deposited on a highly doped substrate was developed by Stevens. The Stevens model uses sinusoidal illumination to calculate the sensor MTF degradation due to charge diffusion and sampling aperture as a function of spatial frequency. The drawback of this approach is the difficulty to evaluate analytically the electrical crosstalk distribution, which can be a good tool for predicting the detector performances, particularly for smaller pixels. In this paper, we use point-source illumination to evaluate the pixel response function (PRF). This approach is applied to the case of CMOS sensors and buried channel CCD sensors. The MTF model includes the impact of pixel size and charge diffusion. The QE model and crosstalk distribution are directly derived from the PRF expression. The models can take into account an electric field induced by a doping gradient.

Published in:

Electron Devices, IEEE Transactions on  (Volume:59 ,  Issue: 3 )