By Topic

On the Co-Polarized Scattered Intensity Ratio of Rough Layered Surfaces: The Probability Law Derived From the Small Perturbation Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saddek Afifi ; Lab. de Phys. des Lasers, Univ. Badji Mokhtar Annaba, Annaba, Algeria ; Richard Dusseaux

We determine the probability law of the ratio between the co-polarized intensities scattered from a stack of two two-dimensional rough interfaces in the incidence plane. Calculations are carried out within the framework of the first-order small perturbation method. For slightly rough interfaces with infinite length and Gaussian height distributions, we show that the probability density function is only a function of two parameters and has an infinite average and an infinite variance. For a sand layer on a granite surface in backscattering configurations, we study the influence of the incidence angle and the cross-spectral density upon this probability law.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 4 )