Cart (Loading....) | Create Account
Close category search window
 

Mitigating Distributed Denial of Service Attacks in Multiparty Applications in the Presence of Clock Drifts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhang Fu ; Dept. of Comput. Sci. & Eng., Chalmers Univ. of Technol., Goteborg, Sweden ; Papatriantafilou, M. ; Tsigas, P.

Network-based applications commonly open some known communication port(s), making themselves easy targets for (distributed) Denial of Service (DoS) attacks. Earlier solutions for this problem are based on port-hopping between pairs of processes which are synchronous or exchange acknowledgments. However, acknowledgments, if lost, can cause a port to be open for longer time and thus be vulnerable, while time servers can become targets to DoS attack themselves. Here, we extend port-hopping to support multiparty applications, by proposing the BIGWHEEL algorithm, for each application server to communicate with multiple clients in a port-hopping manner without the need for group synchronization. Furthermore, we present an adaptive algorithm, HOPERAA, for enabling hopping in the presence of bounded asynchrony, namely, when the communicating parties have clocks with clock drifts. The solutions are simple, based on each client interacting with the server independently of the other clients, without the need of acknowledgments or time server(s). Further, they do not rely on the application having a fixed port open in the beginning, neither do they require the clients to get a "first-contact” port from a third party. We show analytically the properties of the algorithms and also study experimentally their success rates, confirm the relation with the analytical bounds.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

May-June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.