By Topic

A Quantitative Evaluation of Confidence Measures for Stereo Vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoyan Hu ; Dept. of Comput. Sci., Stevens Inst. of Technol., Hoboken, NJ, USA ; Mordohai, P.

We present an extensive evaluation of 17 confidence measures for stereo matching that compares the most widely used measures as well as several novel techniques proposed here. We begin by categorizing these methods according to which aspects of stereo cost estimation they take into account and then assess their strengths and weaknesses. The evaluation is conducted using a winner-take-all framework on binocular and multibaseline datasets with ground truth. It measures the capability of each confidence method to rank depth estimates according to their likelihood for being correct, to detect occluded pixels, and to generate low-error depth maps by selecting among multiple hypotheses for each pixel. Our work was motivated by the observation that such an evaluation is missing from the rapidly maturing stereo literature and that our findings would be helpful to researchers in binocular and multiview stereo.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 11 )