By Topic

Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Corsini, M. ; Visual Comput. Lab., Ist. di Scienza e Tecnol. dell'Inf., Pisa, Italy ; Cignoni, P. ; Scopigno, R.

This paper deals with the problem of taking random samples over the surface of a 3D mesh describing and evaluating efficient algorithms for generating different distributions. We discuss first the problem of generating a Monte Carlo distribution in an efficient and practical way avoiding common pitfalls. Then, we propose Constrained Poisson-disk sampling, a new Poisson-disk sampling scheme for polygonal meshes which can be easily tweaked in order to generate customized set of points such as importance sampling or distributions with generic geometric constraints. In particular, two algorithms based on this approach are presented. An in-depth analysis of the frequency characterization and performance of the proposed algorithms are also presented and discussed.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 6 )