By Topic

Energy-Efficient Tree-Based Multipath Power Control for Underwater Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Junfeng Xu ; Dalian University of Technology, Dalian ; Keqiu Li ; Geyong Min ; Kai Lin
more authors

Due to the use of acoustic channels with limited available bandwidth, Underwater Sensor Networks (USNs) often suffer from significant performance restrictions such as low reliability, low energy-efficiency, and high end-to-end packet delay. The provisioning of reliable, energy-efficient, and low-delay communication in USNs has become a challenging research issue. In this paper, we take noise attenuation in deep water areas into account and propose a novel layered multipath power control (LMPC) scheme in order to reduce the energy consumption as well as enhance reliable and robust communication in USNs. To this end, we first formalize an optimization problem to manage transmission power and control data rate across the whole network. The objective is to minimize energy consumption and simultaneously guarantee the other performance metrics. After proving that this optimization problem is NP-complete, we solve the key problems of LMPC including establishment of the energy-efficient tree and management of energy distribution and further develop a heuristic algorithm to achieve the feasible solution of the optimization problem. Finally, the extensive simulation experiments are conducted to evaluate the network performance under different working conditions. The results reveal that the proposed LMPC scheme outperforms the existing mechanism significantly.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:23 ,  Issue: 11 )