Cart (Loading....) | Create Account
Close category search window
 

Markov Invariants for Phylogenetic Rate Matrices Derived from Embedded Submodels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jarvis, P. ; Sch. of Math. & Phys., Univ. of Tasmania, Hobart Tas, TAS, Australia ; Sumner, J.

We consider novel phylogenetic models with rate matrices that arise via the embedding of a progenitor model on a small number of character states, into a target model on a larger number of character states. Adapting representation-theoretic results from recent investigations of Markov invariants for the general rate matrix model, we give a prescription for identifying and counting Markov invariants for such "symmetric embedded” models, and we provide enumerations of these for the first few cases with a small number of character states. The simplest example is a target model on three states, constructed from a general 2 state model; the "2 hookrightarrow 3” embedding. We show that for 2 taxa, there exist two invariants of quadratic degree that can be used to directly infer pairwise distances from observed sequences under this model. A simple simulation study verifies their theoretical expected values, and suggests that, given the appropriateness of the model class, they have superior statistical properties than the standard (log) Det invariant (which is of cubic degree for this case).

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

May-June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.