Cart (Loading....) | Create Account
Close category search window
 

Fabrication and characterization of ambipolar devices on an undoped AlGaAs/GaAs heterostructure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Chen, J.C.H. ; School of Physics, University of New South Wales, Sydney NSW 2052, Australia ; Wang, D.Q. ; Klochan, O. ; Micolich, A.P.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3673837 

We have fabricated AlGaAs/GaAs heterostructure devices in which the conduction channel can be populated with either electrons or holes simply by changing the polarity of a gate bias. The heterostructures are entirely undoped, and carriers are, instead, induced electrostatically. We use these devices to perform a direct comparison of the scattering mechanisms of two-dimensional electrons (μpeak = 4 × 106 cm2/Vs) and holes (μpeak = 0.8 × 106 cm2/Vs) in the same conduction channel with nominally identical disorder potentials. We find significant discrepancies between electron and hole scattering, with the hole mobility being considerably lower than expected from simple theory.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 5 )

Date of Publication:

Jan 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.