By Topic

Work in progress — Programming in a confined space — A case study in porting modern robot software to an antique platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In a typical introductory AI class, the topic of reinforcement learning may be allocated only a few hours of class time. One engaging example of reinforcement learning uses a crawling robot that learns to use its two-degree-of-freedom arm to drag itself forward. Unfortunately, the cost of the required hardware is prohibitively expensive for many departments for what is typically a once-a-semester demonstration. So we decided to port the algorithm to a platform that many departments may already have on hand: the LEGO Mindstorms RCX 2.0. Initially the task seemed relatively straightforward: build a robot base out of LEGO parts and implement the algorithm in the Not Quite C language. However the challenges of designing a robot arm without servos and attempting to trim code down to a size that would fit on the RCX has proven to be as educational to the undergraduates working on the project as we hope the final product will be to students in AI classes. This paper describes the challenges we have faced and the solutions we have implemented, as well as the work that remains to be completed.

Published in:

Frontiers in Education Conference (FIE), 2011

Date of Conference:

12-15 Oct. 2011