By Topic

Analysis of a New 33–58-GHz Doubly Balanced Drain Mixer in 90-nm CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hong-Yuan Yang ; Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. ; Jeng-Han Tsai ; Tian-Wei Huang ; Huei Wang

A new doubly balanced drain-pumped topology for CMOS passive mixer design is proposed in this paper. In the efforts to improve the conversion loss of passive balanced mixers, the CMOS drain-pumped topology is employed. In addition, the doubly balanced architecture with the advantages of good port-to- port isolations has been combined with the CMOS drain mixer de- sign. For the broad bandwidth and the flatness of the conversion loss, a wideband matching technique using a broadband Marchand balun network is analyzed and successfully implemented in the mixer design. This mixer is fabricated in standard 90-nm CMOS technology. According to experiment results, the mixer has a measured conversion loss of 7.5 ± 1.5 dB from 33 to 58 GHz. Based on the double-balanced architecture, the local oscillator (LO)-to-RF and LO-to-IF isolations are better than 42.7 and 51.5 dB, respectively. The mixer consumes zero dc power with a compact size of 0.55 × 0.52 mm2. To the best of our knowledge, this paper presents the first CMOS drain mixer using doubly balanced topology.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:60 ,  Issue: 4 )