By Topic

Selfish Distributed Compression Over Networks: Correlation Induces Anarchy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramamoorthy, A. ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA ; Roychowdhury, V.P. ; Singh, S.K.

We consider the min-cost multicast problem (under network coding) with multiple correlated sources where each terminal wants to losslessly reconstruct all the sources. We study the inefficiency brought forth by the selfish behavior of the terminals in this scenario by modeling it as a noncooperative game among the terminals. The degradation in performance due to the lack of regulation is measured by the Price of Anarchy (POA), which is defined as the ratio between the cost of the worst possible Wardrop equilibrium and the socially optimum cost. Our main result is that in contrast with the case of independent sources, the presence of source correlations can significantly increase the price of anarchy. Toward establishing this result, we first characterize the socially optimal flow and rate allocation in terms of four intuitive conditions. Next, we show that the Wardrop equilibrium is a socially optimal solution for a different set of (related) cost functions. Using this, we construct explicit examples that demonstrate that the POA >; 1 and determine near-tight upper bounds on the POA as well. The main techniques in our analysis are Lagrangian duality theory and the usage of the supermodularity of conditional entropy.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 5 )