Cart (Loading....) | Create Account
Close category search window
 

On Sampling and Coding for Distributed Acoustic Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Konsbruck, R.L. ; Sch. of Comput. & Commun. Sci. (I&C), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Telatar, I.E. ; Vetterli, M.

The issue of how to efficiently represent the data collected by a network of microphones recording spatio-temporal acoustic wave fields is addressed. Each sensor node in the network samples the sound field, quantizes the samples and transmits the encoded samples to some central unit, which computes an estimate of the original sound field based on the information received from all the microphones. Our analysis is based on the spectral properties of the sound field, which are induced by the physics of wave propagation and have a significant impact on the efficiency of the chosen sampling lattice and coding scheme. As field acquisition by a sensor network typically implies spatio-temporal sampling of the field, a multidimensional sampling theorem for homogeneous random fields with compactly supported spectral measures is proved. To assess the loss of information implied by source coding, rate distortion functions for various coding schemes and sampling lattices are determined. In particular, centralized coding, independent coding and some multiterminal schemes are compared. Under the assumption of spectral whiteness of the sound field, it is shown that sampling with a quincunx lattice followed by independent coding is optimal as it achieves the lower bound given by centralized coding.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.