By Topic

Energy-Distortion Tradeoffs in Gaussian Joint Source-Channel Coding Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jain, A. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Gunduz, D. ; Kulkarni, S.R. ; Poor, H.V.
more authors

The information-theoretic notion of energy efficiency is studied in the context of various joint source-channel coding problems. The minimum transmission energy E(D) required to communicate a source over a noisy channel so that it can be reconstructed within a target distortion D is analyzed. Unlike the traditional joint source-channel coding formalisms, no restrictions are imposed on the number of channel uses per source sample. For single-source memoryless point-to-point channels, E(D) is shown to be equal to the product of the minimum energy per bit Ebmin of the channel and the rate-distortion function R(D) of the source, regardless of whether channel output feedback is available at the transmitter. The primary focus is on Gaussian sources and channels affected by additive white Gaussian noise under quadratic distortion criteria, with or without perfect channel output feedback. In particular, for two correlated Gaussian sources communicated over a Gaussian multiple-access channel, inner and outer bounds on the energy-distortion region are obtained, which coincide in special cases. For symmetric channels, the difference between the upper and lower bounds on energy is shown to be at most a constant even when the lower bound goes to infinity as D→ 0. It is also shown that simple uncoded transmission schemes perform better than the separation-based schemes in many different regimes, both with and without feedback.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 5 )