By Topic

Impact of Isothermal Aging and Sn Grain Orientation on the Long-Term Reliability of Wafer-Level Chip-Scale Package Sn–Ag–Cu Solder Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tae-Kyu Lee ; Component Quality & Technol. Group, Cisco Syst., Inc., San Jose, CA, USA ; Zhou, B. ; Bieler, T.R.

The interaction between isothermal aging and the long-term reliability of wafer-level chip-scale packages with Sn-3.0Ag-0.5Cu (wt%) solder ball interconnects is investigated. On isothermally aging at 100 and 150°C for 500 h and then thermally cycling from 0 to 100°C with 10 min of dwell time, the lifetime of the package is reduced by approximately 29%, depending on the aging condition. The microstructural evolution is observed during thermal aging and thermal cycling using orientation image microscopy. A Sn grain orientation structure transformation is observed. Different mechanisms after aging at various conditions are identified, and their impacts on the fatigue life of solder joints discussed.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 3 )