Cart (Loading....) | Create Account
Close category search window

Improving the image reconstruction in Electrical Impedance Tomography (EIT) with block matrix-based Multiple Regularization (BMMR): A practical phantom study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bera, T.K. ; Dept. of Instrum. & Appl. Phys., Indian Inst. of Sci., Bangalore, India ; Biswas, S.K. ; Rajan, K. ; Jampana, N.

Conductivity image reconstruction is studied with a Block Matrix based Multiple Regularization (BMMR) technique in Electrical Impedance Tomography (EIT) using practical phantoms. The response matrix (JTJ) is partitioned into several sub-block matrices and the largest element of each sub-block matrices is taken as regularization parameter for the nodes of the FEM mesh contained by that sub-block. Boundary potential data are collected from practical phantoms with different inhomogeneity configurations and the conductivity images are reconstructed in a Model Based Iterative Image Reconstruction (MoBIIR) algorithm. Conductivity images, reconstructed with BMMR technique, are compared with the images obtained with Single-step Tikhonov Regularization (STR) and modified Levenberg-Marquardt Regularization (LMR) methods. Results show that BMMR technique reduces the reconstruction error and reconstruct the better conductivity images by improving the conductivity profile of the domain under test for all the phantoms. Image analysis showed that the BMMR method improves image contrast parameters, conductivity profiles, and spatial resolution of the reconstructed images.

Published in:

Information and Communication Technologies (WICT), 2011 World Congress on

Date of Conference:

11-14 Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.