By Topic

New network sensitivity-based approach for real-time complex power flow calculation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang, W.-T. ; Dept. of Ind. Educ. & Technol., Nat. Changhua Univ. of Educ., Changhua, Taiwan ; Yao, K.-C.

This study proposes a novel network sensitivity-based approach to solving complex power flow calculation problems in real time. A new sensitivity factor, named Jacobian-based distribution factor (JBDF), is used for the calculation of active and reactive power flow in transmission systems. It is derived from the Jacobian matrix of the base case Newton-Raphson power flow solution, and kept constant during real-time line flow calculation. Unlike well-known distribution factors, such as generation shift distribution factor (GSDF), generalised generation shift distribution factor (GGDF) and Z-bus distribution factor (ZBD), this approach reflects changes in complex injection power. Changes in load conditions from base case loads, with either conforming or non-conforming changes in complex power in each bus, can be used to rapidly compute active and reactive power flow without iterations. The proposed approach was tested on IEEE 14-Bus and 30-Bus systems. Numerical results demonstrate that the proposed approach is not only superior to previous distribution factors, but also compares favourably with the Newton-Raphson power flow method. It is well suited to real-time applications in steady-state security control and optimal dispatch.

Published in:

Generation, Transmission & Distribution, IET  (Volume:6 ,  Issue: 2 )