By Topic

Finding Celebrities in Billions of Web Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiao Zhang ; Inst. of Adv. Study, Tsinghua Univ., Beijing, China ; Lei Zhang ; Xin-Jing Wang ; Heung-Yeung Shum

In this paper, we present a face annotation system to automatically collect and label celebrity faces from the web. With the proposed system, we have constructed a large-scale dataset called “Celebrities on the Web,” which contains 2.45 million distinct images of 421 436 celebrities and is orders of magnitude larger than previous datasets. Collecting and labeling such a large-scale dataset pose great challenges on current multimedia mining methods. In this work, a two-step face annotation approach is proposed to accomplish this task. In the first step, an image annotation system is proposed to label an input image with a list of celebrities. To utilize the noisy textual data, we construct a large-scale celebrity name vocabulary to identify candidate names from the surrounding text. Moreover, we expand the scope of analysis to the surrounding text of webpages hosting near-duplicates of the input image. In the second step, the celebrity names are assigned to the faces by label propagation on a facial similarity graph. To cope with the large variance in the facial appearances, a context likelihood is proposed to constrain the name assignment process. In an evaluation on 21 735 faces, both the image annotation system and name assignment algorithm significantly outperform previous techniques.

Published in:

Multimedia, IEEE Transactions on  (Volume:14 ,  Issue: 4 )
Biometrics Compendium, IEEE