By Topic

Sparse Color Interest Points for Image Retrieval and Object Categorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Julian Stottinger ; Department of Information Engineering and Computer Science, University of Trento, Trento, Italy ; Allan Hanbury ; Nicu Sebe ; Theo Gevers

Interest point detection is an important research area in the field of image processing and computer vision. In particular, image retrieval and object categorization heavily rely on interest point detection from which local image descriptors are computed for image matching. In general, interest points are based on luminance, and color has been largely ignored. However, the use of color increases the distinctiveness of interest points. The use of color may therefore provide selective search reducing the total number of interest points used for image matching. This paper proposes color interest points for sparse image representation. To reduce the sensitivity to varying imaging conditions, light-invariant interest points are introduced. Color statistics based on occurrence probability lead to color boosted points, which are obtained through saliency-based feature selection. Furthermore, a principal component analysis-based scale selection method is proposed, which gives a robust scale estimation per interest point. From large-scale experiments, it is shown that the proposed color interest point detector has higher repeatability than a luminance-based one. Furthermore, in the context of image retrieval, a reduced and predictable number of color features show an increase in performance compared to state-of-the-art interest points. Finally, in the context of object recognition, for the Pascal VOC 2007 challenge, our method gives comparable performance to state-of-the-art methods using only a small fraction of the features, reducing the computing time considerably.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 5 )