By Topic

An Energy-Efficient L2 Cache Architecture Using Way Tag Information Under Write-Through Policy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianwei Dai ; Intel Corp., Hillsboro, OR, USA ; Lei Wang

Many high-performance microprocessors employ cache write-through policy for performance improvement and at the same time achieving good tolerance to soft errors in on-chip caches. However, write-through policy also incurs large energy overhead due to the increased accesses to caches at the lower level (e.g., L2 caches) during write operations. In this paper, we propose a new cache architecture referred to as way-tagged cache to improve the energy efficiency of write-through caches. By maintaining the way tags of L2 cache in the L1 cache during read operations, the proposed technique enables L2 cache to work in an equivalent direct-mapping manner during write hits, which account for the majority of L2 cache accesses. This leads to significant energy reduction without performance degradation. Simulation results on the SPEC CPU2000 benchmarks demonstrate that the proposed technique achieves 65.4% energy savings in L2 caches on average with only 0.02% area overhead and no performance degradation. Similar results are also obtained under different L1 and L2 cache configurations. Furthermore, the idea of way tagging can be applied to existing low-power cache design techniques to further improve energy efficiency.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )