By Topic

Run-time stochastic task mapping on a large scale network-on-chip with dynamically reconfigurable tiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hosseinabady, M. ; Dept. of Electr. & Electron. Eng., Univ. of Bristol, Bristol, UK ; Nunez-Yanez, J.L.

Dynamically reconfigurable platforms based on network-on-chips (NoC) could be a viable option for the deployment of large heterogeneous multicore designs. The dynamic nature of these platforms will mean that run-time application mapping and core management will represent a key challenge since the exact tasks requirements and workloads will not be known a priori. Considering the Manhattan distance among tasks as a measure of efficiency for a mapped application, this study proposes a distributed stochastic dynamic task mapping strategy for mapping applications efficiently onto a large dynamically reconfigurable NoC. The effectiveness of the mapping scheme is investigated considering the transient and steady states of the dynamic platform. The comparison with state-of-the-art centralised dynamic task mapping methods shows more than 26.4% improvement in application communication distance during steady state, which implies lower energy consumption and lower execution time.

Published in:

Computers & Digital Techniques, IET  (Volume:6 ,  Issue: 1 )