By Topic

Minimum Loss Network Reconfiguration Using Mixed-Integer Convex Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jabr, R.A. ; Dept. of Electr. & Comput. Eng., American Univ. of Beirut, Beirut, Lebanon ; Singh, R. ; Pal, B.C.

This paper proposes a mixed-integer conic programming formulation for the minimum loss distribution network reconfiguration problem. This formulation has two features: first, it employs a convex representation of the network model which is based on the conic quadratic format of the power flow equations and second, it optimizes the exact value of the network losses. The use of a convex model in terms of the continuous variables is particularly important because it ensures that an optimal solution obtained by a branch-and-cut algorithm for mixed-integer conic programming is global. In addition, good quality solutions with a relaxed optimality gap can be very efficiently obtained. A polyhedral approximation which is amenable to solution via more widely available mixed-integer linear programming software is also presented. Numerical results on practical test networks including distributed generation show that mixed-integer convex optimization is an effective tool for network reconfiguration.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 2 )